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Abstract

This paper describes development of artificial neural network (ANN) retention model, which can be used for method development in variety
ofion chromatographic applications. By using developed retention model it is possible both to improve performance characteristic of developec
method and to speed up new method development by reducing unnecessary experimentation. Multilayered feed forward neural network he
been used to model retention behaviour of void peak, lithium, sodium, ammonium, potassium, magnesium, calcium, strontium and barium ir
relation with the eluent flow rate and concentration of methasulphonic acid (MSA) in eluent. The probability of finding the global minimum and
fast convergence at the same time were enhanced by applying a two-phase training procedure. The developed two-phase training proced:
consists of both first and second order training. Several training algorithms were applied and compared, namely: back propagation (BP)
delta-bar-delta, quick propagation, conjugate gradient, quasi Newton and Levenberg—Marquardt. It is shown that the optimized two-phas
training procedure enables fast convergence and avoids problems arisen from the fact that every new weight initialization can be regarde
as a new starting position and yield irreproducible neural network if only second order training is applied. Activation function, number of
hidden layer neurons and number of experimental data points used for training set were optimized in order to insure good predictive ability
with respect to speeding up retention modelling procedure by reducing unnecessary experimental work. The predictive ability of optimized
neural networks retention model was tested by using several statistical tests. This study shows that developed artificial neural network ar
very accurate and fast retention modelling tool applied to model varied inherent non-linear relationship of retention behaviour with respect to
mobile phase parameters.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction applications of ion chromatography in various fields. Selec-
tivity plays the principal role in IC and can be modulated as a
lon chromatography (IC) has become a routine analytical function of the nature of analytes, stationary phases, eluents
method and extensive literature, including bo¢k®] and (composition, eluent flow rate) and temperature at which sep-
reviews[3-5], has been published describing methods and aration occurs. Because the properties of the eluent and tem-
perature on which separation occurs can be varied more easily
"+ Corresponding author. Tel.: +385 1 4597205; fax: +385 14507250,  OPtimization of separation is usually achieved by changes in
E-mail addressestomislav.bolanca@fkit.hr (T. Boldm), those parameters after the selection of an appropriate station-
hregelja@helix.hr (H. Regelja), sven.loncaric@fer.hr (S.davit). ary phase. The most efficient optimization methodologies in
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ion chromatography are based on the prediction of the elu-two-phase training algorithm. The two-phase training algo-
tion behaviour through retention models. Several theoretical rithm represents a combination of two training algorithms,
retention models for anions in ion chromatography were de- in this case: back propagation (BP), used for 100 iteration
veloped[6—15]and comparefll6—-18] An effective separa-  steps followed by BP, delta-bar-delta (DBD), quick propaga-
tion of many metal cations is possible only in the presence tion (QP), conjugate gradient (CG), quasi Newton (QN) or
of complexing agents forming kinetically labile complexes Levenberg—Marquardt (LM), used until minimum on error
with the separated ions. The retention and separation of inor-surface has been found. Two-phase training enables to use
ganic anions as well as metal complexes may be influencedadvantages of two training algorithms in one training proce-
by employing dissociation/protonation equilibria of analyte dure resulting with better predictive ability obtained within
species and eluent iofis9]. There is still much to be investi-  shorter time needed for the calculations.

gated in the field of alkaline, earth alkaline cations and heavy

metals retention modeling.

Artificial intelligence (Al) has emerged as an important 2. Theory
empirical modelling tool amongst the analytical chemists for
solving ion chromatographic separation proble23-24] ANNSs are massively parallel, highly connected structures
There are several types of Al tools such as genetic algorithms,consisting of a number of simple, nonlinear processing ele-
expert systems, inductive learning, fuzzy logic and artificial ments. Because of their massively parallel structure, they can
neural networks (ANN). Conventional computers are good perform computations at a very high rate if implemented on
at executing algorithms that apply procedural logic to well- a dedicated hardware. Their adaptive nature enables them to
defined problems. Unluckily, they are not very clever at em- |earn the characteristics of input signals and adapt to changes
ulating human cognitive skills. However computers that are inthe data. Because of their nonlinear nature they can perform
based on ANN are seen as being a promising solution to thesgunctional approximation and data fitting operations which
kinds of Al problems, since they endeavour to imitate the way are beyond optimal linear techniques. Feedforward neural
in which the human brain works. Their ability to learn and networks are a basic type of neural networks capable of ap-
generalize well, fast operation and ease of implementation proximating generic classes of functions, including continu-
features have made ANNs method of first choice for reten- ous and integrable ones. An important class of feedforward
tion modelling in ion chromatograph#3,24] Once trained,  neural networks is MLP neural networks. An MLP consists
the neural network can be used during ion chromatographicof three types of layers: an input layer, an output layer and
method development process to provide instant answer to theone or more hidden layers. An appropriate MLP structure
task it learned. helps to achieve higher model accuracy.

Of all available types of artificial neural networks, multi-
layered perceptrons (MLPs) are the most commonly used.
There are many algorithms for training MLP networks
[25—-29] The popular back propagation (BP) algorit[88] is
simple bu't reportedly has a problem with SlO_W CONVETGENCE. a1 number of hidden layersls The input layer is consid-
Thus, various related algorithms have been introduced to ad—ered as layer 0. Let the number of neurons in hidden layer |
dress _that proplerﬁZS]. Most of them are based on second beN;,1=1,2,..., L. Let wﬁ. represent the weight of the link
order information about the shape of the error surf&dg. between thgth neuron of thé— Lst hidden layer arith neu-
The need to select the larger number of parameters for S€C1on of thelth hidden layer, andf. be the bias parameter ith

?hne?rovr;jliglgonthm increases possibility of incorrect setting neuron of the Ith hidden layer. Leg represent théth input

The aim of this work is development of the suitable arti-
ficial neural network retention model, which can be used in i:yp;t ESS:“ fa“y‘sf‘
a variety of applications for method development and reten-
tion modelling of inorganic cations in ion chromatography.

MLP artificial neural networks were used to model retention input ,
behaviour of void peak, lithium, sodium, ammonium, potas-
sium, magnesium, calcium, strontium and barium in relation
with eluent flow rate and concentration of methasulphonic
acid (MSA) in eluent. MLP training algorithm, activation change
function, number of hidden layer neurons and number of ex- training data set conection
perimental data points used for training set were optimized weights
in terms of obtaining precise and accurate retention model targets
with respect of minimization of unnecessary experimenta-
tion and time needed for the calculation procedures. The ad-
vantage of the developed model is application of optimized Fig. 1. Basic structure of MLP neural networks.

2.1. Multilayer perceptron neural networks

Basic structure of MLP is shown iRig. 1 Suppose the

output

compute error
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parameter to the MLP. L@g’ be the output ofth neuron of minimum error, is relatively easy to implement. However,

thelth hidden layer, which can be computed according to the the BP algorithm has some problems for many applications.
standard MLP formulas as: The algorithm is not guaranteed to find the global minimum

of the error function since gradient descent may get stuck
1 I -1 ; in local minima, where it may remain indefinitely. In addi-
i =1f Z wyyj ~+ 0 @) tion to this, long training sessions are often required in order
j=l to find an acceptable weight solution because of the well-
) known difficulties inherent in gradient descent optimization.
i=1... . Nl=1... L Therefore, a lot of variations to improve the convergence
0 . of the BP were proposed such as DBD, EDBD (extended
yi =%, i=L1...,Ny, Ny=No delta-bar-delta), Qf33,34]. Optimization methods such as
wheref() is the activation function. Lety; represent the ~ Second-order methods (CG, QN, LM) have also been used
weight of the link between thigh neuron of the.th hidden ~ for ANN training in recent years. The LM algorithm com-
layer and thekth neuron of the output layer, amk be the bines the best features of the Gauss-Newton technique and
bias parameter of theh output neuron. The outputs of MLP  the steepest-descent algorithm, but avoids many of their lim-
can be computed as: itations. In particular, it generally does not suffer from the
problem of slow convergend®5,36] The relative perfor-

Nt L mance of algorithms depends on the problem being tackled.
Ve = Z iy + Bk ) Therefore, in this study the MLP were trained with the BP,

i=1 DBD, QP, CG, QN and LM algorithms.

Ni—1

k=1,...,N,

3. Experimental
2.2. Training algorithms
3.1. Instrumentation
A neural network model can be developed through a pro-

cess called training. Suppose the training data consists of Dionex DX600 chromatography system (Sunnyvale, CA,
Np sample pairs{(xp, dp), P=1, 2, ..., Np}, wherex, and USA) equipped with quartenary gradient pump (GS50), chro-
dp areNx- andNy-dimensional vectors representing the in- matography module (LC30) and detector module (ED50A)
puts and the desired outputs of the neural network, respec-was used in all experiments. Separation and suppressor
tively. Let w be the weight vector containing all tH, ~ columns used were Dionex lonPac CG12A (4 miS0 mm)
weights of the neural network. The objective of training is guard column, lonPac CS12A (4 mx250 mm) separation
to find w such that the error between the neural network pre- column and CAES — 4mm suppressor column, working in
dictions and the desired outputs are minimized mitfw), recycle mode, were used, respectively. The sample-loop vol-
where ume was 2%L. The eluent flow rate was varied from 0.20 to

. . N, f2.00 mL/min and concentrlz;ltion r?f MiAlin eluent was varied

2 rom 10.00 to 25.00 mmol/L. The whole system was com-
Ew) = 2 Z Z (pkxp. w) = dpe)” = 2 Z ep(w) () puter controlled through Chromeleon 6.40 + SP1 Build 7.11
p=lk=1 =1 software.
anddy is thekth element of vectody, ypk(Xp, w) is thekth The data for further evaluation were obtained by exporting
output of the neural network when the input presented to the the appropriate chromatograms into ASCI|I files. ASCII data
network isxp. The termey(w) is the error in the output due to  files were further evaluated using Microcal Origin (Microcal
thepth sample. Every training algorithm has its own scheme Software, USA) software package.
for updating the weights of the neural network.
Training algorithms are an integral part of ANN model 3.2. Reagents and solutions

development. An appropriate topology may still fail to give a
good model, unless trained by a suitable training algorithm. A Mixed standard solution of lithium (1.0000g/L),
good training algorithm will shorten the training time, while  sodium (1.0000g/L), ammonium (1.0000g/L), potas-
achieving a better accuracy. Therefore, training process is ansium (1.0000g/L), magnesium (1.0000g/L), calcium
important characteristic of the ANNs, whereby representa- (1.0000 g/L), strontium (1.0000 g/L) and barium (1.0000 g/L)
tive examples of the knowledge are iteratively presented to were prepared from the air-dried (at 105%) salts of
the network, so that it can integrate this knowledge within its individual anions of p.a. grade (Merck, Darmstadt, Ger-
structure. There are a number of training algorithms used tomany). Appropriate amounts of individual salts were
traina MLP and afrequently used one is called the BP training weighted into a volumetric flask (100mL) and dis-
algorithm[32]. The BP algorithm, which is based on search- solved with Milli-Q water. Working standard solutions
ing an error surface using gradient descent for points with of lithium (10.00mg/L), sodium (10.00mg/L), ammo-

Np Ny
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nium (10.00 mg/L), potassium (10.00mg/L), magnesium any range, they are only sensitive to inputs in a far smaller
(10.00 mg/L), calcium (10.00 mg/L), strontium (10.00 mg/L) range.

and barium (10.00 mg/L) were prepared by measuring the

appropriate volume of mixed standard solution onto a 3.4. Neural networks

100 mL volumetric flask, which was later filled to the

mark with Milli-Q water. 25 mmol/L methansulfonic acid The neural network used in this paper was the three-layer
(MSA) standard eluent solution was prepared by dilution feed forward neural network. The input layer consists of the

of concentrated MSA (Fluka Chemie, Buchs, Switzerland) two neurons representing eluent flow rate and concentration
with degassed Milli-Q water. Working eluent solutions of MSAineluent. The outputlayer consists of one neuron rep-
were prepared on-line by appropriate dilution of standard resenting the retention of void peak or retention time of one

eluent solution with Milli-Q water. A 18 2 cm~1 water of the particular cations (lithium, sodium, ammonium, potas-

(Millipore, Bedford, MA, USA) was used for dilution in all ~ sium, magnesium, calcium, strontium, barium). The training

cases. algorithm, activation function, number of neurons in hidden
layer and the number of experimental data points used for
3.3. Experimental design training calculations need to be optimized. Therefore training

algorithm was varied between back propagation (BP), delta-

The experimental design has been planed in order to de-Par-delta (DBD), quick propagation (QP), conjugate gradient
scribe the chromatographic behaviour in a multi-dimensional (CG), quasi Newton (QN) or Levenberg-Marquardt (LM),
space: retention time versus eluent flow rate and concentra-the activation function was varied between logistic and hy-
tion of MSA in eluent. The eluent flow rate was varied in Perbolic, the number of nodes in training set was varied form
range from 0.20 to 2.00 mL/min and concentration of MSA 5to 11, and the ratios between sizes of training, testing and
in eluent was varied from 10.00 to 25.00 mmol/L. The 96 Validation were varied accordingly 1:1:1; 2:1:1; 3:1:1.

experimental data points were obtain€dy. 2 presents the ~ 1Wo-phase training procedure was used for all calcula-
experimental design model used for collecting experimental tions. The first phase was 100 iteration steps of error back
data. propagation training in order to achieve fast convergence

Itis preferable that each experimental data point has equalt® the region of global minimum on error surface. The sec-
influence on the neural network model, in order for training ©Nd Phase was varied between back propagation, delta-bar-
and testing set to be representative group of data of the wholedelta, quick propagation, conjugate gradient, quasi Newton
design area. For this reason the random function was applied@nd Levenberg-Marquardt trainings in order to achieve faster
for selection of experimental data points used for training, @1d more accurate convergence. The second phase training
testing and validation set of data. The number of experimen- Procedure was repeated until the global minimum on error

tal data points used for training set was varied in the follow- Surface was found. . . _
ing ratios: training: testing: validation=1:1:1; 2:1:1; 3:1:1. The activation function connecting the input and hidden

The input experimental data were scaled linearly between layer of nodes was varied between logistic function, defined

values zero and one before modelling. This is necessary as&S .

although most neural networks can accept input values iny_—l _ (4)
! N
-1
30+ _< wﬁ.fyf[_lwf)
1+e \7
and hyperbolic function defined as
251 IR IR R R 2 R IR e
LR AR TR R e N | =11, 5l = A B N
Do Wy, = X wipyy e
20+ ¢ 0 6 0 4 0 0 0 0 0 0 Jj=l J=l
E y_] _ € —e
~ L R R R I R R K R [ -
< ¢ ! Ni—1 Ni—1
E 15+ LR AR K IR R R R AR IR R R AR Z ng}7;171+€l( — Z ngy;171+9’1.
’§ * 4 4 6 4 4 4 4 4 4 4 e e e e J=l + e J=l
§m- R R IR IR IR For computation of output activities linear transfer function
3 was employed:
54 Ni—1
-1 I —I-1_ gl
vil=Y w6 (6)
0 , ‘ ‘ , ‘ , , J=
0 02 04 06 08 1 12 14 16 18 2 22 To test the predictive performance of the developed artifi-

Flow rate mL/min

cial neural network retention model an independent valida-
Fig. 2. Design of 96 experimental data points: eluent flow rate vs. concen- tiOn set was used. Statistical analysis was used to calculate
tration of MSA in eluent. agreement between measured and predicted values by using
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standard Pearsdr-correlation coefficient, confidence inter-
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the two best performing two-phase training algorithms, for

vals for intercept and slope as well as SD ratio. The ratio of sodium {Table 3 BP-QN and BP-BP, for the ammonium
the prediction error standard deviation to the original output (Table 4 BP—QN and DBD, for calciumTable 3 BP—DBD
data standard deviation is called the SD ratio. A lower SD and BP-LM, for strontiumTable § BP—QN and BP—DBD
ratio indicates a better prediction. This is equivalent to one and for the bariumTable 9 BP—LM and BP—-DBD, respec-

minus the explained variance of the model.

All calculations were performed in Statistica 6.1 (StatSoft
Inc., USA) environment by using IBM compatible personal
computer equipped with 2.66 MHz Pentium IV processor,
and 512 Mb RAM.

4. Results and discussion

Tables 1-9resent the results of two-phase training al-
gorithm optimization. The results for the two-phase train-
ing algorithm optimization in the case of retention modelling
of void volume {Table J), potassiumTable § and magne-
sium (Table § shows that maximal correlation coefficient
and minimal SD ratio are obtained by using BP—QN and
BP-LM algorithm. On the contrary, results for retention mod-
elling of lithium (Table 2 indicates BP—QN and BP-BP as

Table 1

tively. It can be seenl@ables 1-9that BP—BP and BP—-DBD
need significantly more (up to 30 times more for lithium)
iteration steps to converge to the global minimum on error
surface. It means that significantly more time is needed for
BP-BP and BP-DBD training indicating those two meth-
ods as a time consuming ones, especially if no significant
improvement in prediction ability is obtainedables 1-3.

On the basis of previous discussion it can be stated that the
optimal two-phase training algorithms for retention mod-
elling of inorganic cations are BP—QN and BP-LM. All
further calculations were made by using those two training
algorithms.

Tables 10-18resent the results of activation function
optimization. It can be seen that in the case of void peak
(Table 10, lithium (Table 13, potassium Table 14, stron-
tium (Table 17 and barium Table 1§ retention modelling,
maximal correlation coefficient and minimal SD ratio are

Results for two-phase training algorithm optimization in the case of void peak retention modelling

Training, step one Training, step two

Validation error

Method Number of iteration steps Method Number of iteration steps SD ratio Correlation
Back propagation 100 Conjugate gradient descent 68 .052956 099861

Back propagation 100 Quick propagation 404 .028966 099959

Back propagation 100 Back propagation 14997 .010222 099982

Back propagation 100 Delta-bar-delta 14990 .012482 099991

Back propagation 100 Levenberg—Marquardt 490 .0168127 099991

Back propagation 100 Quasi Newton 268 .01r636 099992

Table 2

Results for two-phase training algorithm optimization in the case of lithium retention modelling

Training, step one Training, step two Validation error

Method Number of iteration steps Method Number of iteration steps SD ratio Correlation
Back propagation 100 Conjugate gradient descent 159 .066835 099778

Back propagation 100 Quick propagation 533 .06292 099807

Back propagation 100 Delta-bar-delta 14921 .043393 099906

Back propagation 100 Levenberg—Marquardt 328 .04604 099907

Back propagation 100 Back propagation 14433 .039799 099921

Back propagation 100 Quasi Newton 550 .08r361 099948

Table 3

Results for two-phase training algorithm optimization in the case of sodium retention modelling

Training, step one Training, step two Validation error

Method Number of iteration steps Method Number of iteration steps SD ratio Correlation
Back propagation 100 Conjugate gradient descent 139 .074@35 099719

Back propagation 100 Quick propagation 1405 .057557 099843

Back propagation 100 Delta-bar-delta 1106 .049182 099887

Back propagation 100 Levenberg—Marquardt 9136 .048062 099897

Back propagation 100 Back propagation 14327 .048291 099906

Back propagation 100 Quasi Newton 342 .088349 099929
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Table 4
Results for two-phase training algorithm optimization in the case of ammonium retention modelling
Training, step one Training, step two Validation error
Method Number of iteration steps Method Number of iteration steps SD ratio Correlation
Back propagation 100 Conjugate gradient descent 33 .069475 099758
Back propagation 100 Quick propagation 1178 .092241 099864
Back propagation 100 Delta-bar-delta 14601 .049781 099877
Back propagation 100 Levenberg—Marquardt 1491 .040566 09989
Back propagation 100 Back propagation 2901 .04816 099893
Back propagation 100 Quasi Newton 68 .043385 099921
Table 5
Results for two-phase training algorithm optimization in the case of potassium retention modelling
Training, step one Training, step two Validation error
Method Number of iteration steps Method Number of iteration steps SD ratio Correlation
Back propagation 100 Conjugate gradient descent 203 07222 09974
Back propagation 100 Quick propagation 14998 .05243 09987
Back propagation 100 Delta-bar-delta 14535 .09165 09987
Back propagation 100 Levenberg—Marquardt 1218 .05025 09987
Back propagation 100 Back propagation 1499 .04887 09989
Back propagation 100 Quasi Newton 1480 0435 0999
Table 6
Results for the two-phase training algorithm optimization in the case of magnesium retention modelling
Training, step one Training, step two Validation error
Method Number of iteration steps Method Number of iteration steps SD ratio Correlation
Back propagation 100 Conjugate gradient descent 6410 .1128 09936
Back propagation 100 Quick propagation 14392 .08638 09963
Back propagation 100 Delta-bar-delta 1409 .01B4 0997
Back propagation 100 Levenberg—Marquardt 547 .07634 09972
Back propagation 100 Back propagation 1414 .0684 Q9977
Back propagation 100 Quasi Newton 1365 .0@82 Q9977
Table 7
Results for two-phase training algorithm optimization in the case of calcium retention modelling
Training, step one Training, step two Validation error
Method Number of iteration steps Method Number of iteration steps SD ratio Correlation
Back propagation 100 Conjugate gradient descent 233 .10507 09949
Back propagation 100 Quick propagation 993 .08B15 09966
Back propagation 100 Delta-bar-delta 438 .017 09975
Back propagation 100 Levenberg—Marquardt 12527 .07875 09976
Back propagation 100 Back propagation 34 .068B26 0998
Back propagation 100 Quasi Newton 9408 .05p54 09982
Table 8
Results for two-phase training algorithm optimization in the case of strontium retention modelling
Training, step one Training, step two Validation error
Method Number of iteration steps Method Number of iteration steps SD ratio Correlation
Back propagation 100 Conjugate gradient descent 65 1112 09939
Back propagation 100 Quick propagation 1295 .09®19 09951
Back propagation 100 Delta-bar-delta 14947 .09208 09956
Back propagation 100 Levenberg—Marquardt 390 .09856 09958
Back propagation 100 Back propagation 14189 .07675 09971
Back propagation 100 Quasi Newton 447 .06939 09977
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Table 9
Results for two-phase training algorithm optimization in the case of barium retention modelling

Training, step one Training, step two

Validation error

Method

Number of iteration steps Method Number of iteration steps SD ratio Correlation
Back propagation 100 Conjugate gradient descent 127 1152 09935
Back propagation 100 Quick propagation 14196 .08885 09964
Back propagation 100 Delta-bar-delta 867 .08B92 09965
Back propagation 100 Levenberg—Marquardt 499 .07a81 09972
Back propagation 100 Back propagation 13578 .07898 09973
Back propagation 100 Quasi Newton 1488 .0@B35 0998
Table 10
Results for activation function optimization in the case of void peak retention modelling
Activation function Training, step one Training, step two Validation error
Method Iteration steps Method Iteration steps SD ratio Correlation
Logistic Back propagation 100 Quasi Newton 435 .092956 099861
Hyperbolic Back propagation 100 Quasi Newton 481 .038976 099926
Logistic Back propagation 100 Levenberg—Marquardt 499 .09P538 099572
Hyperbolic Back propagation 100 Levenberg—Marquardt 113 .41@6 091344
Table 11
Results for activation function optimization in the case of lithium retention modelling
Activation function Training, step one Training, step two Validation error
Method Iteration steps Method Iteration steps SD ratio Correlation
Logistic Back propagation 100 Quasi Newton 1432 .04D694 09992
Hyperbolic Back propagation 100 Quasi Newton 167 .04872 099893
Logistic Back propagation 100 Levenberg—Marquardt 1488 .03M14 099939
Hyperbolic Back propagation 100 Levenberg—Marquardt 1085 .034124 099942
Table 12
Results for activation function optimization in the case of sodium retention modelling
Activation function Training, step one Training, step two Validation error
Method Iteration steps Method Iteration steps SD ratio Correlation
Logistic Back propagation 100 Quasi Newton 1447 .031122 099952
Hyperbolic Back propagation 100 Quasi Newton 707 .033706 09994
Logistic Back propagation 100 Levenberg—Marquardt 1447 .030122 099952
Hyperbolic Back propagation 100 Levenberg—Marquardt 1207 .03@178 099934
Table 13
Results for activation function optimization in the case of ammonium retention modelling
Activation function Training, step one Training, step two Validation error
Method Iteration steps Method Iteration steps SD ratio Correlation
Logistic Back propagation 100 Quasi Newton 959 .03D588 099926
Hyperbolic Back propagation 100 Quasi Newton 157 .04a346 099902
Logistic Back propagation 100 Levenberg—Marquardt 1485 .060147 099828
Hyperbolic Back propagation 100 Levenberg—Marquardt 1497 .058159 099865
Table 14
Results for activation function optimization in the case of potassium retention modelling
Activation function Training, step one Training, step two Validation error
Method Iteration steps Method Iteration steps SD ratio Correlation
Logistic Back propagation 100 Quasi Newton 140 0.04451 0.999
Hyperbolic Back propagation 100 Quasi Newton 658 0.04142 0.9991
Logistic Back propagation 100 Levenberg—Marquardt 732 0.04442 0.999
Hyperbolic Back propagation 100 Levenberg—Marquardt 204 0.05078 0.9987
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Table 15
Results for activation function optimization in the case of magnesium retention modelling
Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation
Logistic Back propagation 100 Quasi Newton 1443 .06D3 09982
Hyperbolic Back propagation 100 Quasi Newton 136 .07901 09969
Logistic Back propagation 100 Levenberg—Marquardt 530 .06813 09979
Hyperbolic Back propagation 100 Levenberg—Marquardt 1449 .08%81 09965
Table 16
Results for activation function optimization in the case of calcium retention modelling
Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation
Logistic Back propagation 100 Quasi Newton 460 .08159 09967
Hyperbolic Back propagation 100 Quasi Newton 226 .08784 09961
Logistic Back propagation 100 Levenberg—Marquardt 460 .08059 09967
Hyperbolic Back propagation 100 Levenberg—Marquardt 187 .08305 09966

obtained by using hyperbolic function, while in the case modelling of inorganic cations. All further calculations were
of sodium ([able 13, ammonium Table 13, magnesium made by using hyperbolic activation function.

(Table 15 and calcium {able 16 retention modelling maxi- Table 19resents the results of optimization procedures of
mal correlation coefficient and minimal SD ratio are obtained the number of hidden layer neurons and the number of exper-
by using logistic function. In the case of void peak, lithium, imental data points used for training calculations. The combi-
sodium, ammonium, magnesium, strontium and barium re- nation of neural networks parameters, number of hidden layer
tention modelling Tables 10-13, 15, 17, ) &aster conver- neurons, number of experimental data points used for train-
gence to the global minimum on error surface is obtained ing set and training algorithm, which provides maximal cor-
by using hyperbolic activation function. Logistic activation relation coefficient and minimal SD ratio presents optimized
function provides faster convergence in the case of potassiumneural network retention model. Frofable 19t can be seen
and calcium retention modellingdbles 14 and )6Results that the optimal number of hidden layer neuronsis 11 for void
for potassium show that correlation coefficient in the case of peak, lithium, ammonium, potassium and magnesium, 9 for
using either logistic or hyperbolic function in combination sodium and barium, 7 for strontium and 5 for calcium. The
with BP—QN and BP-LM training algorithm does not differ optimal number of experimental data points used for training
significantly. Results for calcium retention modelling shows set (training:testing:validation) is 3:1:1 for lithium, sodium,
that significantly lower prediction is obtained in the case of ammonium, potassium, magnesium, calcium, strontium and
using logistic function and BP—LM training algorithm then barium and 2:1:1 for void peak. BP—LM training algorithm
by using hyperbolic activation function. This indicates hy- provides maximal correlation coefficient and minimal SD ra-
perbolic transfer function as the optimal choice for retention tio for all cations. Predictive ability of optimized artificial

Table 17
Results for activation function optimization in the case of strontium retention modelling

Activation function

Training, step one

Training, step two

Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation
Logistic Back propagation 100 Quasi Newton 810 .06Y26 09979
Hyperbolic Back propagation 100 Quasi Newton 120 .06023 09979
Logistic Back propagation 100 Levenberg—Marquardt 1636 .06671 09978
Hyperbolic Back propagation 100 Levenberg—Marquardt 1319 1139 09936
Table 18

Results for activation function optimization in the case of barium retention modelling

Activation function

Training, step one

Training, step two

Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation
Logistic Back propagation 100 Quasi Newton 694 .0688 09976
Hyperbolic Back propagation 100 Quasi Newton 274 09577 09954
Logistic Back propagation 100 Levenberg—Marquardt 697 .09453 09957
Hyperbolic Back propagation 100 Levenberg—Marquardt 1489 .06611 09978
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Table 19

Optimization of number of hidden layer neurons and number of experimental data points used for training calculations

Cation Phase one, Phase two, Number of hidden Sampling, Correlation SD ratio
iteration steps iteration steps layers neurons training:testing:validating

\oid BP, 100 QN, 470 7 3:1:1 0.9998 0.0120
BP, 100 LM, 491 11 2:1:1 0.9999 0.0119

Lithium BP, 100 QN, 745 7 2:1:1 0.9994 0.0308
BP, 100 LM, 1486 11 311 0.9995 0.0299

Sodium BP, 100 QN, 239 11 3:1:1 0.9988 0.0312
BP, 100 LM, 1490 9 311 0.9990 0.0295

Ammonium BP, 100 QN, 1305 7 3:1:1 0.9992 0.0348
BP, 100 LM, 678 11 311 0.9994 0.0344

Potassium BP, 100 QN, 697 9 311 0.9995 0.0315
BP, 100 LM, 1490 11 311 0.9995 0.0327

Magnesium BP, 100 QN, 60 11 2:11 0.9982 0.06051
BP, 100 LM, 320 11 311 0.9984 0.0566

Calcium BP, 100 QN, 458 9 311 0.9984 0.0567
BP, 100 LM, 885 5 311 0.9983 0.0399

Strontium BP, 100 QN, 796 11 3:1:1 0.9982 0.0519
BP, 100 LM, 486 7 311 0.9985 0.0553

Barium BP, 100 QN, 2637 9 3:1:1 0.9990 0.0444
BP, 100 LM, 3188 9 311 0.9995 0.0305

neural networks retention models was tested by employing were different (intercept was different from zero and/or slope

statistical calculations. was different from one). There are four possibilities, namely:
The prediction powers of developed artificial neural net-

works retention models were tested and results are shown ine if intercept is equal to zero and slope is equal to one, there

Figs. 3—-111t is shown that relationships between simulated  is no systematic error,

retention timesy() against measured retention timgswWere if intercept is equal to zero and slope is different of one,

investigated. If there were no modeling errors and no mea- there is proportional systematic error,

surement random errors were made and if there were no biase if intercept is different from zero and slope is equal to one,

this would yield the relationship=x. Because at least ran- there is absolute systematic error,

dom errors were made the coefficients of linear relationship
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Fig. 4. Predictive ability calculations for optimized lithium neural network
retention modelR? denotes standard PearsRicorrelation g aver denotes
average relative errog vy denotes minimal relative error amgvax de-
notes maximal relative error.

Fig. 3. Predictive ability calculations for optimized void peak neural net-
work retention modelR? denotes standard PearsRrcorrelation,er aver
denotes average relative errefyn denotes minimal relative error and
& max denotes maximal relative error.
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Fig. 5. Predictive ability calculations for optimized sodium neural network Fig. 7. Predictive ability calculations for optimized potassium neural net-

retention modelR? denotes standard PearsRicorrelation g aver denotes work retention modelR? denotes standard Pears@reorrelation,er aver
average relative errog vy denotes minimal relative error amgyax de- denotes average relative errefyn denotes minimal relative error and
notes maximal relative error. & max denotes maximal relative error.

o ifthere is no linearity, it is necessary to carry out the mod- of previous discussion, it can be stated that there is no sys-
eling over a shorter ion chromatographic parameter rangetematic error present in optimized artificial neural network
(if this is still compatible with original aim). retention models for all cations.

Since correlation coefficient is the measure of the joint
variation between two variables, it presents the strength of the
proposed linear relationship between a predicted and mea-

FromFigs. 3—11it can be seen that lower and upper 95%
confidence interval limits boundaries for intercept include
value_ zero. This proves that intercept 01_‘ calibration CUIVe IS g red retention times. It can be sedig6. 3-1) that cor-
not significantly different from zero whit respect of confi- o |ation coefficient R2) has satisfactory values in the range
dence 95%. Furthermore, lower and upper 95% confidencepqyeen 0.9983 and 0.9999, and strong linear relationship
interval limits boundaries for slope include value one, what poqveen predicted and measured retention times exist for all

proves that slope of calibration curve is not significantly dif- .o+ions. The average of relative errors are ranged between
ferent from one with respect of confidence 95%. On the basis 4 55 and 1.52%. minimal relative errors are ranged between
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Fig. 6. Predictive ability calculations for optimized ammonium neural net- Fig. 8. Predictive ability calculations for optimized magnesium neural net-
work retention modelR? denotes standard Pears@reorrelation,er aver work retention modelR? denotes standard Pears@reorrelation,e aver
denotes average relative errefyn denotes minimal relative error and denotes average relative errefyn denotes minimal relative error and
& max denotes maximal relative error. & max denotes maximal relative error.
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Fig. 9. Predictive ability calculations for optimized calcium neural network  Fig. 11. Predictive ability calculations for optimized barium neural network

retention modelR? denotes standard PearsBieorrelationgr aver denotes retention modelR? denotes standard PearsRicorrelationg aver denotes
average relative errog min denotes minimal relative error amgyax de- average relative errog vy denotes minimal relative error amgyax de-
notes maximal relative error. notes maximal relative error.

0.018 and 0.028% and maximal relative errors are rangedratios even above 1000:1. The possibility of retention times

between 1.87 and 2.02%. On the basis of conducted statis-adjustment of potassium, calcium and magnesium is crucial

tical test, it can be concluded that developed ANN retention for determination of rubidium and cesium as well as for de-

models have good generalization ability. termination of ethyilamines and morpholine. By adjusting re-
By applying developed artificial neural networks for ad- tention times of late eluting cations especially strontium and

justment of eluent flow rate and concentration of MSA in elu- barium it is possible to obtain shorter ion chromatographic

entitis possible to increase selectivity. That is crucial factor run and speed up analysis, without decreasing selectivity of

for numerous different applications of ion chromatography fast eluting anions (lithium, sodium, ammonium).

analysis, particular for wastewater analysis and analysis of

samples with great differences in concentration of analyte

components. By adjusting the retention times of sodium and 5, Conclusion

ammonium it is possible to determine mentioned cations in

In this work artificial neural networks were used for reten-
250 tion modelling of cations in ion chromatography. First order
training algorithms have shown not to be optimal due to a fact
that training procedures were very slow and time consuming.
When second order training algorithms were applied weight
initialization could yield irreproducible neural network reten-
tion model. Every new initialisation can be regarded as a new
start position for the second order algorithm search for the
global minimum. Obviously, the chance of finding the global
minimum directly depends on the smoothness of the error hy-
perplane and the number of local minima. Although special
learning parameters (e.g. momentum factor) can help to avoid
LoD, Sone local minima, no guarantee of finding the global minimum
Coefficient -0.0918 1.0000 . ! g . . ) g g L.
Lower95% | -0.5672 0.9885 can be given. The probability of finding the global minimum
95% £ 3 . <.
e T T T i was enhanced by applying two-phase training procedure con-
. cn/% | 020 | enn/% [ 1,97 sisting of both first and second order training algorithms. This
0 50 100 150 200 250 study shows that the optimized two-phase training consisting
Mesurated Retention Time/ min of first and second order algorithms insures faster training
) o o ) o ) with a higher probability of avoiding local minima.
Fig. 10. Predictive ability calculations for optimized strontium neural net- . g . ]
; . In this work the activation function, the number of hid-
work retention modelR? denotes standard PearsRrcorrelation,er aver -
denotes average relative errefyn denotes minimal relative error and den layer neurones, and the numb_er Of experimental Qata
& vax denotes maximal relative error. points used for training set are optimized in order to obtain a
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neural network model with good predictive ability. The opti-  [9] T.B. Hoover, Sep. Sci. Technol. 17 (1982) 295.
mized neural network retention models were used to predict[10] D.R. Jenke, G.K. Pagenkopf, Anal. Chem. 56 (1984) 85.
retention times for void peak and all eight cations (lithium, [11] D-R. Jenke, G.K. Pagenkopf, Anal. Chem. 56 (1984) 88.

. . . . . [12] M. Maruo, N. Hirayama, T. Kuwamoto, J. Chromatogr. 481 (1989)
sodium, ammonium, potassium, magnesium, calcium, stron-""" o/
tium, barium). It can be seen that there is no systematic error[13) N. Hirayama, T. Kuwamoto, J. Chromatogr. 508 (1990) 51.
present in optimized artificial neural network retention mod- [14] A. Yamamoto, K. Hayakawa, A. Matsunaga, E. Mizukami, M.
els for void peak and all cations. Correlation coefficients are Miyazaki, J. Chromatogr. 627 (1992).
ranged between 0.9983 and 0.9999. From these results it caf->] D-R- Jenke, Anal. Chem. 66 (1994) 4466.
be concluded that developed neural network retention model[le] J.E. Madden, PR. Haddad, J. Chroamtogr. A 829 (1998) 65.

} . 7 [47] J.E. Madden, P.R. Haddad, J. Chroamtogr. A 850 (1-2) (1999) 29.
generalizes data well and that it can be used for retention[ig] .. Madden, N. Avdalo P.E. Jackson, P.R. Haddad, J. Chro-
modelling. matogr. A 855 (1) (1999) 65.

It is shown that selectivity of ion chromatographic meth- [19] P. Jang, J. Chromatogr. A 789 (1-2) (1997) 3.
ods strongly depends on applied ion chromatographic con-[2% SM S?C‘(’:hoeggé“’:ihtB“JZZgEi:grgéiarrzi”i;‘ggE('l’\ggg;agg' H.J. Metting,
ditions (eluent flow rate, concentration of MSA in eluent). 511 ;" ayel, J.E.g Madden, PR. Ha((‘j:]d'ad, Chromatographia 49 (1999)
The developed retention model allows manipulating with ap- 481.
pearance of the particular peak on chromatogram and allows[22] J.E. Madden, N. Avdalovic, P.R. Haddad, J. Havel, J. Chromatogr.
improvement of separation between particular cations. By A 910 (2001) 173.
using this retention model it is possible both to improve per- 23] (K5 LS;C;'L‘ ;gsaﬂ:ferswiergg;‘e&’gz' Z‘C ZO'%“(Z) 'z’gogg;";ls
formance characteristic of applied me'[h_Od and to speed uF)[24] G.. Sreénik’, Z Debeljak,S. Cérjan-S;[efanofzi M. Novi€, T. Bolarta, .
the new method development by reducing unnecessary €X- 3. chromatogr. A 973 (2002) 47.

perimentation. [25] A. Maren, C. Harston, R. Pap, Handbook of Neural Computing Ap-
plications, Academic Press, London, 1990.
[26] D.T. Pham, S. Sagiroglu, Proc IMechE, Part B, J. Eng. Manufact.
210 (1996) 69.
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