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Marulićev trg 20, 10000 Zagreb, Croatia
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This paper describes development of artificial neural network (ANN) retention model, which can be used for method developmen
f ion chromatographic applications. By using developed retention model it is possible both to improve performance characteristic of
ethod and to speed up new method development by reducing unnecessary experimentation. Multilayered feed forward neural
een used to model retention behaviour of void peak, lithium, sodium, ammonium, potassium, magnesium, calcium, strontium an
elation with the eluent flow rate and concentration of methasulphonic acid (MSA) in eluent. The probability of finding the global minim
ast convergence at the same time were enhanced by applying a two-phase training procedure. The developed two-phase traini
onsists of both first and second order training. Several training algorithms were applied and compared, namely: back propag
elta-bar-delta, quick propagation, conjugate gradient, quasi Newton and Levenberg–Marquardt. It is shown that the optimized

raining procedure enables fast convergence and avoids problems arisen from the fact that every new weight initialization can b
s a new starting position and yield irreproducible neural network if only second order training is applied. Activation function, nu
idden layer neurons and number of experimental data points used for training set were optimized in order to insure good predic
ith respect to speeding up retention modelling procedure by reducing unnecessary experimental work. The predictive ability of
eural networks retention model was tested by using several statistical tests. This study shows that developed artificial neural
ery accurate and fast retention modelling tool applied to model varied inherent non-linear relationship of retention behaviour with
obile phase parameters.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Ion chromatography (IC) has become a routine analytical
ethod and extensive literature, including books[1,2] and

eviews[3–5], has been published describing methods and
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applications of ion chromatography in various fields. Se
tivity plays the principal role in IC and can be modulated
function of the nature of analytes, stationary phases, el
(composition, eluent flow rate) and temperature at which
aration occurs. Because the properties of the eluent and
perature on which separation occurs can be varied more
optimization of separation is usually achieved by chang
those parameters after the selection of an appropriate st
ary phase. The most efficient optimization methodologie
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ion chromatography are based on the prediction of the elu-
tion behaviour through retention models. Several theoretical
retention models for anions in ion chromatography were de-
veloped[6–15] and compared[16–18]. An effective separa-
tion of many metal cations is possible only in the presence
of complexing agents forming kinetically labile complexes
with the separated ions. The retention and separation of inor-
ganic anions as well as metal complexes may be influenced
by employing dissociation/protonation equilibria of analyte
species and eluent ions[19]. There is still much to be investi-
gated in the field of alkaline, earth alkaline cations and heavy
metals retention modeling.

Artificial intelligence (AI) has emerged as an important
empirical modelling tool amongst the analytical chemists for
solving ion chromatographic separation problems[20–24].
There are several types of AI tools such as genetic algorithms,
expert systems, inductive learning, fuzzy logic and artificial
neural networks (ANN). Conventional computers are good
at executing algorithms that apply procedural logic to well-
defined problems. Unluckily, they are not very clever at em-
ulating human cognitive skills. However computers that are
based on ANN are seen as being a promising solution to these
kinds of AI problems, since they endeavour to imitate the way
in which the human brain works. Their ability to learn and
generalize well, fast operation and ease of implementation
features have made ANNs method of first choice for reten-
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two-phase training algorithm. The two-phase training algo-
rithm represents a combination of two training algorithms,
in this case: back propagation (BP), used for 100 iteration
steps followed by BP, delta-bar-delta (DBD), quick propaga-
tion (QP), conjugate gradient (CG), quasi Newton (QN) or
Levenberg–Marquardt (LM), used until minimum on error
surface has been found. Two-phase training enables to use
advantages of two training algorithms in one training proce-
dure resulting with better predictive ability obtained within
shorter time needed for the calculations.

2. Theory

ANNs are massively parallel, highly connected structures
consisting of a number of simple, nonlinear processing ele-
ments. Because of their massively parallel structure, they can
perform computations at a very high rate if implemented on
a dedicated hardware. Their adaptive nature enables them to
learn the characteristics of input signals and adapt to changes
in the data. Because of their nonlinear nature they can perform
functional approximation and data fitting operations which
are beyond optimal linear techniques. Feedforward neural
networks are a basic type of neural networks capable of ap-
proximating generic classes of functions, including continu-
o ward
n ists
o and
o ture
h

2

e
t -
e yer l
b k
b
r
n

ion modelling in ion chromatography[23,24]. Once trained
he neural network can be used during ion chromatogra
ethod development process to provide instant answer

ask it learned.
Of all available types of artificial neural networks, mu

ayered perceptrons (MLPs) are the most commonly u
here are many algorithms for training MLP netwo

25–29]. The popular back propagation (BP) algorithm[30] is
imple but reportedly has a problem with slow converge
hus, various related algorithms have been introduced t
ress that problem[25]. Most of them are based on seco
rder information about the shape of the error surface[31].
he need to select the larger number of parameters fo
nd order algorithm increases possibility of incorrect se

heir values.
The aim of this work is development of the suitable a

cial neural network retention model, which can be use
variety of applications for method development and re

ion modelling of inorganic cations in ion chromatograp
LP artificial neural networks were used to model reten
ehaviour of void peak, lithium, sodium, ammonium, po
ium, magnesium, calcium, strontium and barium in rela
ith eluent flow rate and concentration of methasulph
cid (MSA) in eluent. MLP training algorithm, activati

unction, number of hidden layer neurons and number o
erimental data points used for training set were optim

n terms of obtaining precise and accurate retention m
ith respect of minimization of unnecessary experime

ion and time needed for the calculation procedures. Th
antage of the developed model is application of optim
us and integrable ones. An important class of feedfor
eural networks is MLP neural networks. An MLP cons
f three types of layers: an input layer, an output layer
ne or more hidden layers. An appropriate MLP struc
elps to achieve higher model accuracy.

.1. Multilayer perceptron neural networks

Basic structure of MLP is shown inFig. 1. Suppose th
otal number of hidden layers isL. The input layer is consid
red as layer 0. Let the number of neurons in hidden la
eNl , l = 1, 2,. . ., L. Let wl

ij represent the weight of the lin
etween thejth neuron of thel – 1st hidden layer andith neu-
on of thelth hidden layer, andθl

i be the bias parameter ofith
euron of the lth hidden layer. Letxi represent theith input

Fig. 1. Basic structure of MLP neural networks.
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parameter to the MLP. Lety−l
ij be the output ofith neuron of

thelth hidden layer, which can be computed according to the
standard MLP formulas as:

y−l
i = f


Nl−1∑

j=l

wl
ijy

−l−1
j + θl

i


 (1)

i = 1, . . . , Nl, l = 1, . . . , L

ȳ0
i = xi, i = 1, . . . , Nx, Nx = N0

where f(·) is the activation function. Letvki represent the
weight of the link between theith neuron of theLth hidden
layer and thekth neuron of the output layer, andβk be the
bias parameter of thekth output neuron. The outputs of MLP
can be computed as:

yk =
NL∑
i=1

vkiy
−L
i + βk (2)

k = 1, . . . , Ny

2.2. Training algorithms

pro-
c ts of
N
d in-
p spec-
t
w g is
t pre-
d
w

E

a
o o the
n to
t eme
f

del
d e a
g m. A
g ile
a is an
i nta-
t d to
t n its
s ed to
t ining
a ch-
i with

minimum error, is relatively easy to implement. However,
the BP algorithm has some problems for many applications.
The algorithm is not guaranteed to find the global minimum
of the error function since gradient descent may get stuck
in local minima, where it may remain indefinitely. In addi-
tion to this, long training sessions are often required in order
to find an acceptable weight solution because of the well-
known difficulties inherent in gradient descent optimization.
Therefore, a lot of variations to improve the convergence
of the BP were proposed such as DBD, EDBD (extended
delta-bar-delta), QP[33,34]. Optimization methods such as
second-order methods (CG, QN, LM) have also been used
for ANN training in recent years. The LM algorithm com-
bines the best features of the Gauss–Newton technique and
the steepest-descent algorithm, but avoids many of their lim-
itations. In particular, it generally does not suffer from the
problem of slow convergence[35,36]. The relative perfor-
mance of algorithms depends on the problem being tackled.
Therefore, in this study the MLP were trained with the BP,
DBD, QP, CG, QN and LM algorithms.

3. Experimental

3.1. Instrumentation
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A neural network model can be developed through a
ess called training. Suppose the training data consis
p sample pairs,{(xp, dp), p= 1, 2, . . ., Np}, wherexp and
p areNx- andNy-dimensional vectors representing the
uts and the desired outputs of the neural network, re

ively. Let w be the weight vector containing all theNw
eights of the neural network. The objective of trainin

o findw such that the error between the neural network
ictions and the desired outputs are minimized,minw E(w),
here

(w) = 1

2

Np∑
p=1

Ny∑
k=1

(ypk(xp, w) − dpk)2 = 1

2

Np∑
p=1

ep(w) (3)

nddpk is thekth element of vectordp, ypk(xp, w) is thekth
utput of the neural network when the input presented t
etwork isxp. The termep(w) is the error in the output due

hepth sample. Every training algorithm has its own sch
or updating the weights of the neural network.

Training algorithms are an integral part of ANN mo
evelopment. An appropriate topology may still fail to giv
ood model, unless trained by a suitable training algorith
ood training algorithm will shorten the training time, wh
chieving a better accuracy. Therefore, training process

mportant characteristic of the ANNs, whereby represe
ive examples of the knowledge are iteratively presente
he network, so that it can integrate this knowledge withi
tructure. There are a number of training algorithms us
rain a MLP and a frequently used one is called the BP tra
lgorithm[32]. The BP algorithm, which is based on sear

ng an error surface using gradient descent for points
Dionex DX600 chromatography system (Sunnyvale,
SA) equipped with quartenary gradient pump (GS50), c
atography module (LC30) and detector module (ED5
as used in all experiments. Separation and suppr
olumns used were Dionex IonPac CG12A (4 mm× 50 mm)
uard column, IonPac CS12A (4 mm× 250 mm) separatio
olumn and CAES – 4 mm suppressor column, workin
ecycle mode, were used, respectively. The sample-loop
me was 25�L. The eluent flow rate was varied from 0.20
.00 mL/min and concentration of MSA in eluent was va

rom 10.00 to 25.00 mmol/L. The whole system was c
uter controlled through Chromeleon 6.40 + SP1 Build
oftware.

The data for further evaluation were obtained by expo
he appropriate chromatograms into ASCII files. ASCII d
les were further evaluated using Microcal Origin (Micro
oftware, USA) software package.

.2. Reagents and solutions

Mixed standard solution of lithium (1.0000 g/L
odium (1.0000 g/L), ammonium (1.0000 g/L), pot
ium (1.0000 g/L), magnesium (1.0000 g/L), calci
1.0000 g/L), strontium (1.0000 g/L) and barium (1.0000 g
ere prepared from the air-dried (at 105◦C) salts o

ndividual anions of p.a. grade (Merck, Darmstadt, G
any). Appropriate amounts of individual salts w
eighted into a volumetric flask (100 mL) and d
olved with Milli-Q water. Working standard solutio
f lithium (10.00 mg/L), sodium (10.00 mg/L), amm
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nium (10.00 mg/L), potassium (10.00 mg/L), magnesium
(10.00 mg/L), calcium (10.00 mg/L), strontium (10.00 mg/L)
and barium (10.00 mg/L) were prepared by measuring the
appropriate volume of mixed standard solution onto a
100 mL volumetric flask, which was later filled to the
mark with Milli-Q water. 25 mmol/L methansulfonic acid
(MSA) standard eluent solution was prepared by dilution
of concentrated MSA (Fluka Chemie, Buchs, Switzerland)
with degassed Milli-Q water. Working eluent solutions
were prepared on-line by appropriate dilution of standard
eluent solution with Milli-Q water. A 18 M� cm−1 water
(Millipore, Bedford, MA, USA) was used for dilution in all
cases.

3.3. Experimental design

The experimental design has been planed in order to de-
scribe the chromatographic behaviour in a multi-dimensional
space: retention time versus eluent flow rate and concentra-
tion of MSA in eluent. The eluent flow rate was varied in
range from 0.20 to 2.00 mL/min and concentration of MSA
in eluent was varied from 10.00 to 25.00 mmol/L. The 96
experimental data points were obtained.Fig. 2 presents the
experimental design model used for collecting experimental
data.
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any range, they are only sensitive to inputs in a far smaller
range.

3.4. Neural networks

The neural network used in this paper was the three-layer
feed forward neural network. The input layer consists of the
two neurons representing eluent flow rate and concentration
of MSA in eluent. The output layer consists of one neuron rep-
resenting the retention of void peak or retention time of one
of the particular cations (lithium, sodium, ammonium, potas-
sium, magnesium, calcium, strontium, barium). The training
algorithm, activation function, number of neurons in hidden
layer and the number of experimental data points used for
training calculations need to be optimized. Therefore training
algorithm was varied between back propagation (BP), delta-
bar-delta (DBD), quick propagation (QP), conjugate gradient
(CG), quasi Newton (QN) or Levenberg–Marquardt (LM),
the activation function was varied between logistic and hy-
perbolic, the number of nodes in training set was varied form
5 to 11, and the ratios between sizes of training, testing and
validation were varied accordingly 1:1:1; 2:1:1; 3:1:1.

Two-phase training procedure was used for all calcula-
tions. The first phase was 100 iteration steps of error back
propagation training in order to achieve fast convergence
to the region of global minimum on error surface. The sec-
o -bar-
d wton
a aster
a aining
p rror
s

den
l ned
a

y

a

y

F tion
w

y

T rtifi-
c lida-
t ulate
a using
It is preferable that each experimental data point has e
nfluence on the neural network model, in order for train
nd testing set to be representative group of data of the w
esign area. For this reason the random function was ap

or selection of experimental data points used for train
esting and validation set of data. The number of experim
al data points used for training set was varied in the fol
ng ratios: training: testing: validation = 1:1:1; 2:1:1; 3:1
he input experimental data were scaled linearly betw
alues zero and one before modelling. This is necessa
lthough most neural networks can accept input value

ig. 2. Design of 96 experimental data points: eluent flow rate vs. co
ration of MSA in eluent.
nd phase was varied between back propagation, delta
elta, quick propagation, conjugate gradient, quasi Ne
nd Levenberg–Marquardt trainings in order to achieve f
nd more accurate convergence. The second phase tr
rocedure was repeated until the global minimum on e
urface was found.

The activation function connecting the input and hid
ayer of nodes was varied between logistic function, defi
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or computation of output activities linear transfer func
as employed:

−l
i =

Nl−1∑
j=l

wl
ijy

−l−1
j + θl

i (6)

o test the predictive performance of the developed a
ial neural network retention model an independent va
ion set was used. Statistical analysis was used to calc
greement between measured and predicted values by
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standard Pearson-Rcorrelation coefficient, confidence inter-
vals for intercept and slope as well as SD ratio. The ratio of
the prediction error standard deviation to the original output
data standard deviation is called the SD ratio. A lower SD
ratio indicates a better prediction. This is equivalent to one
minus the explained variance of the model.

All calculations were performed in Statistica 6.1 (StatSoft
Inc., USA) environment by using IBM compatible personal
computer equipped with 2.66 MHz Pentium IV processor,
and 512 Mb RAM.

4. Results and discussion

Tables 1–9present the results of two-phase training al-
gorithm optimization. The results for the two-phase train-
ing algorithm optimization in the case of retention modelling
of void volume (Table 1), potassium (Table 5) and magne-
sium (Table 6) shows that maximal correlation coefficient
and minimal SD ratio are obtained by using BP–QN and
BP–LM algorithm. On the contrary, results for retention mod-
elling of lithium (Table 2) indicates BP–QN and BP–BP as
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the two best performing two-phase training algorithms, for
sodium (Table 3) BP–QN and BP–BP, for the ammonium
(Table 4) BP–QN and DBD, for calcium (Table 7) BP–DBD
and BP–LM, for strontium (Table 8) BP–QN and BP–DBD
and for the barium (Table 9) BP–LM and BP–DBD, respec-
tively. It can be seen (Tables 1–9) that BP–BP and BP–DBD
need significantly more (up to 30 times more for lithium)
iteration steps to converge to the global minimum on error
surface. It means that significantly more time is needed for
BP–BP and BP–DBD training indicating those two meth-
ods as a time consuming ones, especially if no significant
improvement in prediction ability is obtained (Tables 1–9).
On the basis of previous discussion it can be stated that the
optimal two-phase training algorithms for retention mod-
elling of inorganic cations are BP–QN and BP–LM. All
further calculations were made by using those two training
algorithms.

Tables 10–18present the results of activation function
optimization. It can be seen that in the case of void peak
(Table 10), lithium (Table 11), potassium (Table 14), stron-
tium (Table 17) and barium (Table 18) retention modelling,
maximal correlation coefficient and minimal SD ratio are
esults for two-phase training algorithm optimization in the case of vo
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ack propagation 100 Quick propagation
ack propagation 100 Delta-bar-delta
ack propagation 100 Levenberg–Marqua
ack propagation 100 Back propagation
ack propagation 100 Quasi Newton
k retention modelling

Validation error

Number of iteration steps SD ratio Corre

descent 68 0.052956 0.99861
404 0.028966 0.99959

14997 0.019222 0.99982
14990 0.014482 0.99991

rdt 490 0.013127 0.99991
268 0.012636 0.99992

tention modelling

Validation error

Number of iteration steps SD ratio Corre

descent 159 0.066635 0.99778
533 0.06292 0.99807

14921 0.043393 0.99906
rdt 328 0.04304 0.99907

14433 0.039799 0.99921
550 0.032361 0.99948
Validation error

Number of iteration steps SD ratio Correlation

descent 139 0.074935 0.99719
1405 0.057557 0.99843
1106 0.049182 0.99887

rdt 9136 0.048062 0.99897
14327 0.043291 0.99906

342 0.038349 0.99929
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Table 4
Results for two-phase training algorithm optimization in the case of ammonium retention modelling

Training, step one Training, step two Validation error

Method Number of iteration steps Method Number of iteration steps SD ratio Correlation

Back propagation 100 Conjugate gradient descent 33 0.069475 0.99758
Back propagation 100 Quick propagation 1178 0.052241 0.99864
Back propagation 100 Delta-bar-delta 14601 0.049781 0.99877
Back propagation 100 Levenberg–Marquardt 1491 0.047566 0.9989
Back propagation 100 Back propagation 2901 0.04816 0.99893
Back propagation 100 Quasi Newton 68 0.043385 0.99921

Table 5
Results for two-phase training algorithm optimization in the case of potassium retention modelling

Training, step one Training, step two Validation error

Method Number of iteration steps Method Number of iteration steps SD ratio Correlation

Back propagation 100 Conjugate gradient descent 203 0.07222 0.9974
Back propagation 100 Quick propagation 14998 0.05243 0.9987
Back propagation 100 Delta-bar-delta 14535 0.05165 0.9987
Back propagation 100 Levenberg–Marquardt 1218 0.05125 0.9987
Back propagation 100 Back propagation 1499 0.04687 0.9989
Back propagation 100 Quasi Newton 1480 0.04435 0.999

Table 6
Results for the two-phase training algorithm optimization in the case of magnesium retention modelling

Training, step one Training, step two Validation error

Method Number of iteration steps Method Number of iteration steps SD ratio Correlation

Back propagation 100 Conjugate gradient descent 6410 0.1128 0.9936
Back propagation 100 Quick propagation 14392 0.08638 0.9963
Back propagation 100 Delta-bar-delta 1409 0.0784 0.997
Back propagation 100 Levenberg–Marquardt 547 0.07534 0.9972
Back propagation 100 Back propagation 1414 0.0684 0.9977
Back propagation 100 Quasi Newton 1365 0.0682 0.9977

Table 7
Results for two-phase training algorithm optimization in the case of calcium retention modelling

Training, step one Training, step two Validation error

Method Number of iteration steps Method Number of iteration steps SD ratio Correlation

Back propagation 100 Conjugate gradient descent 233 0.1057 0.9949
Back propagation 100 Quick propagation 993 0.08315 0.9966
Back propagation 100 Delta-bar-delta 438 0.0707 0.9975
Back propagation 100 Levenberg–Marquardt 12527 0.07475 0.9976
Back propagation 100 Back propagation 34 0.06326 0.998
Back propagation 100 Quasi Newton 9408 0.05954 0.9982

Table 8
Results for two-phase training algorithm optimization in the case of strontium retention modelling

Training, step one Training, step two Validation error

Method Number of iteration steps Method Number of iteration steps SD ratio Correlation

Back propagation 100 Conjugate gradient descent 65 0.1112 0.9939
Back propagation 100 Quick propagation 1295 0.09919 0.9951
Back propagation 100 Delta-bar-delta 14947 0.09408 0.9956
Back propagation 100 Levenberg–Marquardt 390 0.09856 0.9958
Back propagation 100 Back propagation 14189 0.07675 0.9971
Back propagation 100 Quasi Newton 447 0.06939 0.9977
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Table 9
Results for two-phase training algorithm optimization in the case of barium retention modelling

Training, step one Training, step two Validation error

Method Number of iteration steps Method Number of iteration steps SD ratio Correlation

Back propagation 100 Conjugate gradient descent 127 0.1152 0.9935
Back propagation 100 Quick propagation 14196 0.08685 0.9964
Back propagation 100 Delta-bar-delta 867 0.08392 0.9965
Back propagation 100 Levenberg–Marquardt 499 0.07481 0.9972
Back propagation 100 Back propagation 13578 0.07398 0.9973
Back propagation 100 Quasi Newton 1488 0.06335 0.998

Table 10
Results for activation function optimization in the case of void peak retention modelling

Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation

Logistic Back propagation 100 Quasi Newton 435 0.052956 0.99861
Hyperbolic Back propagation 100 Quasi Newton 481 0.038976 0.99926
Logistic Back propagation 100 Levenberg–Marquardt 499 0.092538 0.99572
Hyperbolic Back propagation 100 Levenberg–Marquardt 113 0.41026 0.91344

Table 11
Results for activation function optimization in the case of lithium retention modelling

Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation

Logistic Back propagation 100 Quasi Newton 1432 0.040694 0.9992
Hyperbolic Back propagation 100 Quasi Newton 167 0.04672 0.99893
Logistic Back propagation 100 Levenberg–Marquardt 1488 0.035414 0.99939
Hyperbolic Back propagation 100 Levenberg–Marquardt 1085 0.034124 0.99942

Table 12
Results for activation function optimization in the case of sodium retention modelling

Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation

Logistic Back propagation 100 Quasi Newton 1447 0.031122 0.99952
Hyperbolic Back propagation 100 Quasi Newton 707 0.034706 0.9994
Logistic Back propagation 100 Levenberg–Marquardt 1447 0.031122 0.99952
Hyperbolic Back propagation 100 Levenberg–Marquardt 1207 0.036478 0.99934

Table 13
Results for activation function optimization in the case of ammonium retention modelling

Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation

Logistic Back propagation 100 Quasi Newton 959 0.039588 0.99926
Hyperbolic Back propagation 100 Quasi Newton 157 0.044346 0.99902
Logistic Back propagation 100 Levenberg–Marquardt 1485 0.060147 0.99828
Hyperbolic Back propagation 100 Levenberg–Marquardt 1497 0.054459 0.99865

Table 14
Results for activation function optimization in the case of potassium retention modelling

Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation

Logistic Back propagation 100 Quasi Newton 140 0.04451 0.999
Hyperbolic Back propagation 100 Quasi Newton 658 0.04142 0.9991
Logistic Back propagation 100 Levenberg–Marquardt 732 0.04442 0.999
Hyperbolic Back propagation 100 Levenberg–Marquardt 204 0.05078 0.9987
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Table 15
Results for activation function optimization in the case of magnesium retention modelling

Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation

Logistic Back propagation 100 Quasi Newton 1443 0.0603 0.9982
Hyperbolic Back propagation 100 Quasi Newton 136 0.07901 0.9969
Logistic Back propagation 100 Levenberg–Marquardt 530 0.06813 0.9979
Hyperbolic Back propagation 100 Levenberg–Marquardt 1449 0.08581 0.9965

Table 16
Results for activation function optimization in the case of calcium retention modelling

Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation

Logistic Back propagation 100 Quasi Newton 460 0.08159 0.9967
Hyperbolic Back propagation 100 Quasi Newton 226 0.08784 0.9961
Logistic Back propagation 100 Levenberg–Marquardt 460 0.08159 0.9967
Hyperbolic Back propagation 100 Levenberg–Marquardt 187 0.08305 0.9966

obtained by using hyperbolic function, while in the case
of sodium (Table 12), ammonium (Table 13), magnesium
(Table 15) and calcium (Table 16) retention modelling maxi-
mal correlation coefficient and minimal SD ratio are obtained
by using logistic function. In the case of void peak, lithium,
sodium, ammonium, magnesium, strontium and barium re-
tention modelling (Tables 10–13, 15, 17, 18), faster conver-
gence to the global minimum on error surface is obtained
by using hyperbolic activation function. Logistic activation
function provides faster convergence in the case of potassium
and calcium retention modelling (Tables 14 and 16). Results
for potassium show that correlation coefficient in the case of
using either logistic or hyperbolic function in combination
with BP–QN and BP–LM training algorithm does not differ
significantly. Results for calcium retention modelling shows
that significantly lower prediction is obtained in the case of
using logistic function and BP–LM training algorithm then
by using hyperbolic activation function. This indicates hy-
perbolic transfer function as the optimal choice for retention

Table 17
Results for activation function optimization in the case of strontium retention modelling

Activation function Training, step one Training, step two Validation error

Method Iteration steps Method Iteration steps SD ratio Correlation

Logistic Back propagation 100 Quasi Newton 810 0.06726 0.9979
H Qua
L Leve
H Lev

T
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A Trai

Meth ation

L Qua
H Qua
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modelling of inorganic cations. All further calculations were
made by using hyperbolic activation function.

Table 19presents the results of optimization procedures of
the number of hidden layer neurons and the number of exper-
imental data points used for training calculations. The combi-
nation of neural networks parameters, number of hidden layer
neurons, number of experimental data points used for train-
ing set and training algorithm, which provides maximal cor-
relation coefficient and minimal SD ratio presents optimized
neural network retention model. FromTable 19it can be seen
that the optimal number of hidden layer neurons is 11 for void
peak, lithium, ammonium, potassium and magnesium, 9 for
sodium and barium, 7 for strontium and 5 for calcium. The
optimal number of experimental data points used for training
set (training:testing:validation) is 3:1:1 for lithium, sodium,
ammonium, potassium, magnesium, calcium, strontium and
barium and 2:1:1 for void peak. BP–LM training algorithm
provides maximal correlation coefficient and minimal SD ra-
tio for all cations. Predictive ability of optimized artificial
yperbolic Back propagation 100
ogistic Back propagation 100
yperbolic Back propagation 100

able 18
esults for activation function optimization in the case of barium reten

ctivation function Training, step one

Method Iteration steps

ogistic Back propagation 100
yperbolic Back propagation 100
ogistic Back propagation 100
yperbolic Back propagation 100
si Newton 120 0.06723 0.9979
nberg–Marquardt 1636 0.06671 0.9978

enberg–Marquardt 1319 0.1139 0.9936

odelling

ning, step two Validation error

od Iteration steps SD ratio Correl

si Newton 694 0.0688 0.9976
si Newton 274 0.09577 0.9954
nberg–Marquardt 697 0.09453 0.9957

enberg–Marquardt 1489 0.06641 0.9978



82 T. Bolanča et al. / J. Chromatogr. A 1085 (2005) 74–85

Table 19
Optimization of number of hidden layer neurons and number of experimental data points used for training calculations

Cation Phase one,
iteration steps

Phase two,
iteration steps

Number of hidden
layers neurons

Sampling,
training:testing:validating

Correlation SD ratio

Void BP, 100 QN, 470 7 3:1:1 0.9998 0.0120
BP, 100 LM, 491 11 2:1:1 0.9999 0.0119

Lithium BP, 100 QN, 745 7 2:1:1 0.9994 0.0308
BP, 100 LM, 1486 11 3:1:1 0.9995 0.0299

Sodium BP, 100 QN, 239 11 3:1:1 0.9988 0.0312
BP, 100 LM, 1490 9 3:1:1 0.9990 0.0295

Ammonium BP, 100 QN, 1305 7 3:1:1 0.9992 0.0348
BP, 100 LM, 678 11 3:1:1 0.9994 0.0344

Potassium BP, 100 QN, 697 9 3:1:1 0.9995 0.0315
BP, 100 LM, 1490 11 3:1:1 0.9995 0.0327

Magnesium BP, 100 QN, 60 11 2:1:1 0.9982 0.06051
BP, 100 LM, 320 11 3:1:1 0.9984 0.0566

Calcium BP, 100 QN, 458 9 3:1:1 0.9984 0.0567
BP, 100 LM, 885 5 3:1:1 0.9983 0.0399

Strontium BP, 100 QN, 796 11 3:1:1 0.9982 0.0519
BP, 100 LM, 486 7 3:1:1 0.9985 0.0553

Barium BP, 100 QN, 2637 9 3:1:1 0.9990 0.0444
BP, 100 LM, 3188 9 3:1:1 0.9995 0.0305

neural networks retention models was tested by employing
statistical calculations.

The prediction powers of developed artificial neural net-
works retention models were tested and results are shown in
Figs. 3–11. It is shown that relationships between simulated
retention times (y) against measured retention times (x) were
investigated. If there were no modeling errors and no mea-
surement random errors were made and if there were no bias,
this would yield the relationshipy=x. Because at least ran-
dom errors were made the coefficients of linear relationship

F net-
w
d nd
e

were different (intercept was different from zero and/or slope
was different from one). There are four possibilities, namely:

• if intercept is equal to zero and slope is equal to one, there
is no systematic error,

• if intercept is equal to zero and slope is different of one,
there is proportional systematic error,

• if intercept is different from zero and slope is equal to one,
there is absolute systematic error,

F ork
r
a
n

ig. 3. Predictive ability calculations for optimized void peak neural
ork retention model.R2 denotes standard Pearson-R correlation,er AVER

enotes average relative error,er MIN denotes minimal relative error a

r MAX denotes maximal relative error.
ig. 4. Predictive ability calculations for optimized lithium neural netw
etention model.R2 denotes standard Pearson-Rcorrelation,er AVER denotes
verage relative error,er MIN denotes minimal relative error ander MAX de-
otes maximal relative error.
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Fig. 5. Predictive ability calculations for optimized sodium neural network
retention model.R2 denotes standard Pearson-Rcorrelation,er AVER denotes
average relative error,er MIN denotes minimal relative error ander MAX de-
notes maximal relative error.

• if there is no linearity, it is necessary to carry out the mod-
eling over a shorter ion chromatographic parameter range
(if this is still compatible with original aim).

FromFigs. 3–11, it can be seen that lower and upper 95%
confidence interval limits boundaries for intercept include
value zero. This proves that intercept of calibration curve is
not significantly different from zero whit respect of confi-
dence 95%. Furthermore, lower and upper 95% confidence
interval limits boundaries for slope include value one, what
proves that slope of calibration curve is not significantly dif-
ferent from one with respect of confidence 95%. On the basis

F net-
w
d nd
e

Fig. 7. Predictive ability calculations for optimized potassium neural net-
work retention model.R2 denotes standard Pearson-R correlation,er AVER

denotes average relative error,er MIN denotes minimal relative error and
er MAX denotes maximal relative error.

of previous discussion, it can be stated that there is no sys-
tematic error present in optimized artificial neural network
retention models for all cations.

Since correlation coefficient is the measure of the joint
variation between two variables, it presents the strength of the
proposed linear relationship between a predicted and mea-
sured retention times. It can be seen (Figs. 3–11) that cor-
relation coefficient (R2) has satisfactory values in the range
between 0.9983 and 0.9999, and strong linear relationship
between predicted and measured retention times exist for all
cations. The average of relative errors are ranged between
0.56 and 1.52%, minimal relative errors are ranged between

F l net-
w
d nd
e

ig. 6. Predictive ability calculations for optimized ammonium neural
ork retention model.R2 denotes standard Pearson-R correlation,er AVER

enotes average relative error,er MIN denotes minimal relative error a

r MAX denotes maximal relative error.
ig. 8. Predictive ability calculations for optimized magnesium neura
ork retention model.R2 denotes standard Pearson-R correlation,er AVER

enotes average relative error,er MIN denotes minimal relative error a

r MAX denotes maximal relative error.
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Fig. 9. Predictive ability calculations for optimized calcium neural network
retention model.R2 denotes standard Pearson-Rcorrelation,er AVER denotes
average relative error,er MIN denotes minimal relative error ander MAX de-
notes maximal relative error.

0.018 and 0.028% and maximal relative errors are ranged
between 1.87 and 2.02%. On the basis of conducted statis-
tical test, it can be concluded that developed ANN retention
models have good generalization ability.

By applying developed artificial neural networks for ad-
justment of eluent flow rate and concentration of MSA in elu-
ent it is possible to increase selectivity. That is crucial factor
for numerous different applications of ion chromatography
analysis, particular for wastewater analysis and analysis of
samples with great differences in concentration of analyte
components. By adjusting the retention times of sodium and
ammonium it is possible to determine mentioned cations in

F net-
w
d nd
e

Fig. 11. Predictive ability calculations for optimized barium neural network
retention model.R2 denotes standard Pearson-Rcorrelation,er AVER denotes
average relative error,er MIN denotes minimal relative error ander MAX de-
notes maximal relative error.

ratios even above 1000:1. The possibility of retention times
adjustment of potassium, calcium and magnesium is crucial
for determination of rubidium and cesium as well as for de-
termination of ethyilamines and morpholine. By adjusting re-
tention times of late eluting cations especially strontium and
barium it is possible to obtain shorter ion chromatographic
run and speed up analysis, without decreasing selectivity of
fast eluting anions (lithium, sodium, ammonium).

5. Conclusion

In this work artificial neural networks were used for reten-
tion modelling of cations in ion chromatography. First order
training algorithms have shown not to be optimal due to a fact
that training procedures were very slow and time consuming.
When second order training algorithms were applied weight
initialization could yield irreproducible neural network reten-
tion model. Every new initialisation can be regarded as a new
start position for the second order algorithm search for the
global minimum. Obviously, the chance of finding the global
minimum directly depends on the smoothness of the error hy-
perplane and the number of local minima. Although special
learning parameters (e.g. momentum factor) can help to avoid
local minima, no guarantee of finding the global minimum
can be given. The probability of finding the global minimum
w con-
s This
s sting
o ining
w

id-
d data
p in a
ig. 10. Predictive ability calculations for optimized strontium neural
ork retention model.R2 denotes standard Pearson-R correlation,er AVER

enotes average relative error,er MIN denotes minimal relative error a

r MAX denotes maximal relative error.
as enhanced by applying two-phase training procedure
isting of both first and second order training algorithms.
tudy shows that the optimized two-phase training consi
f first and second order algorithms insures faster tra
ith a higher probability of avoiding local minima.
In this work the activation function, the number of h

en layer neurones, and the number of experimental
oints used for training set are optimized in order to obta
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neural network model with good predictive ability. The opti-
mized neural network retention models were used to predict
retention times for void peak and all eight cations (lithium,
sodium, ammonium, potassium, magnesium, calcium, stron-
tium, barium). It can be seen that there is no systematic error
present in optimized artificial neural network retention mod-
els for void peak and all cations. Correlation coefficients are
ranged between 0.9983 and 0.9999. From these results it can
be concluded that developed neural network retention model
generalizes data well and that it can be used for retention
modelling.

It is shown that selectivity of ion chromatographic meth-
ods strongly depends on applied ion chromatographic con-
ditions (eluent flow rate, concentration of MSA in eluent).
The developed retention model allows manipulating with ap-
pearance of the particular peak on chromatogram and allows
improvement of separation between particular cations. By
using this retention model it is possible both to improve per-
formance characteristic of applied method and to speed up
the new method development by reducing unnecessary ex-
perimentation.
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